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1.0 INTRODUCTION

This final report concludes our study of large-scale vectorized numeri-

cal analysis applied to time domain seismic wave phenomena in filled basins.

Applications include calculations of waves from simple surface or buried

sources in a variety of idealized 2-D Basin and Range models (36,000 to

120,000 nodes) and one large 3-D model (400,000 nodes) from Yucca Flat,

Nevada Test Site. Analysis is based on an explicit, finite element, elastic

wave solver designed for fully vectorized execution (vector processing of

code loops) on the CRAY-l. This combination of an explicit solver and the

new generation of supercomputers permits full wave solutions in inhomogeneous

models 10 to 100 times faster and larger than feasible using conventional

solvers on scalar mainframe computers (e.g., CDC 7600).

The study is motivated by interest within the U.S. Air Force in

calculations of high frequency wave fields in realistic models of basins

and basin-like geology. Well controlled models generally include smooth 0

wave speed variations within each material, as well as discontinuities,

curved interfaces, pinch-outs, faults, sharp corners, irregular topography

and surface layers. Typical analytical methods require significant approxi-

mations to make these problems tractable. For example, simplifying assump-

tions on the wave field often involve high-frequency asymptotics and ray

tracing which usually neglect diffractions and surface waves, or sometimes

the replacement of elastic by acoustic media in discrete numerical models.

Physical idealizations can lead to plane, layered models which admit semi- 0

analytic halfspace solutions; or piecewise constant material properties and

smooth interfaces amenable to boundary integral methods; or discrete approxi-

mations but with reduced model size to fit into fast computer memory. However,
with the computational power afforded by explicit methods and supercomputers, 0

these idealizations are often unnecessary and more complete or accurate

solutions are available. In any case, large-scale calculations are useful

in general modeling applications and numerical experiments, as well as the

evaluation of modeling idealizations. S

Research goals of the study are two-fold. First is to perform large-

scale calculations and seismic interpretation for a number of interesting

geologic models. Second, in support of the calculations, is to study

. .. . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . R | - - i I B | . . . . . . " . . . I



L

theoretically the numerical/computational basis for discrete hyperbolic wave
solvers (explicit finite difference/finite element methods) and to increase

their utility in seismic applications, and their compatibility with super-

computer architecture. This latter goal includes an evaluation of present

capabilities on available CRAY hardware.

A previous report addresses these goals in the context of 2-D modeling

of some typical Basin and Range geology. An overview of results is presented

in 1.1 below. The present report is concerned principally with 3-D calcula-

tions for a model of the recent COALORA test in Yucca Flat, Nevada Test Site.

Due to the complexities associated with 3-D modeling and interpretation, the

Yucca Flat site, suggested by Stump (1983), was chosen over other candidate

sites because an excellent geophysical data base exists, incorporating seismic,

gravity and well log data. The geophysical data base and models are discussed

in Section 2 and the 2-D and 3-D finite element calculations are described in

Section 3. A theoretical analysis of the explicit wave solver algorithm is

contained in Section 4. A brief discussion and conclusions complete the report

in Section 5.

1.1 BACKGROUND

The following is a summary of results from an interim report, Wojcik,
et al. (1982), containing a numerical analysis of 2-D basins typical of the
Basin and Range province. Calculations were performed to study the effects

of basin edge geometry on the reflection, transmission and diffraction of
body and surface waves excited by surface sources. Normal and tangential

surface tractions were applied on the model centerlines and synthetic seis-

mograms generated by convolving a 2 Hz wavelet with numerical Green's

functions recorded at closely spaced stations over the surface. Seismic
velocity functions used piecewise linear and piecewise constant approximations

to a suite of functions compiled by Battis (1981) from available Basin and

Range geophysical data, Fig. 1.1-1.

Sysmmetric basin models with three types of flank structure were examined

first. The models and synthetic seismograms for normal and tangential sur-

face loading are illustrated in Fig. 1.1-2 and 1.1-3, respectively. These
and other calculations showed a number of quantitative differences between

a steep faulted flank, an echelon faulted flank and a dipping flank. Basin

-2-



edges are efficient transmitters of Rayleigh waves, apparently independent

of edge details; however, geometry has a strong effect on Rayleigh wave

Ireflection. Shear waves outside the basin depend markedly on source type
and edge geometry due to mode conversions there. The strong shear phase

generated by the tangential source is converted primarily to S-waves at the

edge, whereas the shear phase from the normal source converts most of its

I *energy to Rayleigh waves.

A model of two basins separated by a mountain was also examined. This

basin-range-basin model, Fig. 1.1-4, extended the above results for a single

basin and provided insight into the type and strength of signals communica-

ted between basins. The finite element idealization had 120,000 elements,

required 20 minutes of central processor time (overnight cost, $100.) to

propagate the Rayleigh wave across it, and demonstrated that large-scal,

full wave field calculations are practical on the CRAY-I.
) r" The major result of the finite element theoretical work was that,

the context of Cartesian (rectangular) finite element/finite difference

grids, the governing equations on the element level can be greatly simplified

by linear transformation and formulated so as to admit selective seismic

5 damping on pure shear and dilatational modes of deformation. The trans-

formation is to a set of generalized coordinates based on the allowed

element vibrational modes. The application of linear transformations on

the global as well as local level offers the possibility of further reduc-

0 ing arithmetic operation counts, thereby increasing execution speed of

the algorithm.
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Battis (1981).
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2.0 GEOPHYSICAL DATA BASE AND MODELS

Full wave field seismic calculations are much more complicated in 3-D S

than in 2-D. The reasons are that 3-D geologic data and 2-D surface modeling

and input processing are necessary, finite element data storage and element

processing time both increase substantially, and the amount and complexity

of output processing grows manyfold. Despite these added complexities, with

well designed pre- andpost-processors and a general 3-D finite element solver,

3-D problems can be reasonably modeled, solved and interpreted. There remains

the question of size and utility for the scale of Air Force applications.

An answer to this question of utility--whether large-scale 3-D simula-

tions are practical on today's supercomputers--requires first and foremost a

good geophysical data base. In other words, a well controlled, practical

geologic model, preferable with seismic data available for comparison with

synthetics. Yucca Flat, Nevada was chosen on the basis of data collected

from AFOSR-sponsored research concerning near-field observations of signifi-

cant azimuthal variations in recorded ground motion, Stump and Reinke (1983),

and far-field observations of systematic deviations in peak body wave magni-

tude estimates (mb), Ferguson and Herrin (1982). Other good sources of data .

are the detailed geophysical investigations done in Yucca Flat to insure shot

containment, Cogbill and App (1983).

With the geologic model controlled from the above studies, it is next a

matter of gridding the model, i.e., coding the 3-D finite element discreti-

zation, and running it on a CRAY. This is accomplished in our work using a

general purpose, explicit finite element code called FLEX, consisting of

standard FORTRAN subroutines designed for optimized execution on scalar as

well as vector machines. For the 2-D problems described above, a standard

CRAY-I (one million words of memory) was sufficient. However, for 3-D much

more memory is required and at least a CRAY-lS (three million words) is

necessary.

2.1 YUCCA FLAT GEOPHYSICAL MODELS

Our desire to perform calculations in a well controlled model led to

selecting the north-central part of Yucca Flat, in the immediate neighborhood
S --

of a recent underground nuclear explosion, COALORA. Extensive near-field

ground motion data have been collected from this shot in a cooperative effort

-8-
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(Air Force Weapons Lab, Los Alamos National Lab and University of California,

Berkeley) to extend the observational data base from contained nuclear explo-

sions, Stump and Reinke (1983). To constrain their COALORA propagation model,

Stump and Reinke used a coarser 3-D basin model developed by Ferguson and

Herrin (1982) from a variety of geophysical data. This was refined in the

neighborhood of COALORA using geological cross sections and acoustic logs

s provided by Allen Cogbill and Fred App of the Containment Group at LANL.

The resulting propagation model developed by Stump and Reinke, Fig. 2.1-1,

is assumed to be uniformly layered east and west of the fault. Major features

of the model include the Yucca fault dipping approximately 72 degrees to the

east in a 350-500 meter layer of alluvium overlying 600 meters of interbedded

tuffs--all overlying Paleozoic rock at depths near 1 km. Data from two bore-

holes indicate that the interbedded tuffs have vitrified layers with imped-

ance jumps of a factor of two or more. These are modeled by a single cap
P tlayer of Rainier Mesa tuff in Fig. 2.1-1. The water table is placed at a

depth of 600 meters.

Actually, the Rainier Mesa formation dips 15-18 degrees to the west and

is shallower to the north. Also, the alluvium-tuff interface is highly irreg-

olI  ular over much of the basin, due in part to tectonic movement, Fernald eE al.

(1967). In the COALORA model, smooth depth changes and 3-D variations were

ignored with respect to the abrupt change at the Yucca fault, allowing the

authors to calculate full-wave synthetic seismograms in the uniformly layered

Sl eastern and western halfspace idealizations.

Location of the shot with respect to the Yucca fault is drawn in

Fig. 2.1-2 and indicates a smooth, right-lateral offset in the fault trace

(identified in the field by a low scarp over most of its 25 km length) within

.5 km southeast of the shot epicenter. This is a significant 3-D feature,

being so close to the shot, and provides the central structural element of

our 3-D geologic model. The secondary element is the major discontinuity

between tuff and Paleozoic rock. A coarse model of the contact surface was

provided by Ferguson (1983), based on studies of gravity, borehole and seismic

reflection data. Limited resolution of the data smooths out any local

details, including the Yucca fault which is known to have a vertical offset

of 100-200 meters at the Paleozoic contact.

-9-
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2.2 TE 2-D COALORA MODEL

Before examining the 3-D model in Yucca Flat, a 2-D plane strain model

of the COALORA site was investigated to compare results with layered halfspace

calculations in Stump and Reinke (1983), as well as recorded seismograms.

The shot was located in alluvium at a depth of 280 meters, just above the

Rainier Mesa tuff layer on the western side of Yucca fault. Lateral scale

of the model covers the range of most fielded seismic instruments--three

kilometers east and west of the shot. Model depth is 1.5 km, 400-500 meters

into the underlying Paleozoic rock. To mimic an infinite halfspace, normal

impedance boundary conditions are applied to the two sides and bottom of the

finite element grid. This yields a simple but effective absorbing boundary

which is easily vectorized--in contrast to some other boundary formulations

attempted.

The number of elements in the model is chosen to achieve a given fre-

quency resolution for the slowest body or surface wave. Assuming negligible

excitation of Rayleigh waves due to source depth, the slowest wave is the

shear body wave in the alluvium, where Vs - .98 km/s. Assuming 10 Hz as the

highest frequency of interest in this calculation yields a minimum shear

wavelength of about 98 meters. A rule of thumb for explicit finite element

algorithms is that at least ten elements are necessary per wavelength to

support a wave with minor dispersion. Therefore, an element dimension of

9 meters was used, giving 167 by 666 square elements in a 1.5 by 6 km model,

a total of 111,222 elements.

The line source is a pressurized two-dimensional cavity of elements

through the COALORA shot point, 280 meters below the surface in alluvium and

300 meters west of Yucca fault. Output in the form of synthetic seismograms

is obtained by convolving the calculated velocity response on the free surface

(from the unit pressure step) with a 10 Hz wavelet. No instrument response

is included. The 10 Hz velocity wavelet is a higher frequence signal than

would be expected from shots in alluvium, Haskell (1967), but facilitates the

visual separation of arrivals in the synthetics.

2.3 THE 3-D COALORA MODEL

The three-dimensional geologic model in Yucca flat is contained within a

3-D rectangular box, 1.2 km deep and 4.6 km on a side, centered on the COALORA S

-10-
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shot point. Principal features of the model are the Yucca fault with about

800 meters of right offset in the fault trace south of the shot, and the

I Paleozoic contact surface showing significant depth variation within a 3 km

radius. The fault trace is approximated by a straight north-south line with

a linearly offset segment, i.e., a piecewise linear trace, and the resulting

fault surfaces dip 72 degrees to the east. The Paleozoic contact is assumed

* merely to truncate the alluvium and tuff basin fill from below; there is no

attempt to model conformable layers over the contact surface. A drawing of

the resulting 3-D model is shown in Fig. 2.3-1.

When going from 2-D to 3-D modeling, if it is necessary to maintain the

same frequency resolution, the number of elements goes up tremendously. For

example, to extend the 6 x 1.5 km 2-D COALORA model (666 x 167 - 111,222

elements) to a 6 x 6 x 1.5 km 3-D model with the same frequency resolution

would require 666 x 111,222 -74 million elements. This is over two orders of

magnitude larger than the size currently feasible with in-core processing on

the largest CRAY supercomputer, the CRAY-IS, with 3 million words of memory.

The data structure of FLEX, the finite element code used for these calculations,

permits the processing of 500,000 3-D elastic, small-displacement elements in

n 3 megawords of memory. System overhead and other uncontrollable factors reduce

this number to slightly less than 400,000 elements. Assuming an overall model

aspect ratio (length or width to depth) of 5, the 400,000 available elements

yield a block 125 x 125 x 25 - 390,625.

UClearly, the time and length scales of our 3-D model must be increased

substantially over those of the 2-D model to fit into the CRAY-lS.

Lowering the maximum shear wave frequency resolution from 10 Hz to 2.5 Hz

increases the element size by the same factor, and decreases the number of

elements by 4**3-64. This necessitates only a moderate reduction of the 2-D

model dimensions. The final model is 1.2 x 4.6 x 4.6 km--discretized into

125 x 125 x 25 - 390,625 cubic elements, 37 meters on a side with a maximum

frequency resolution of 2.6 Hz for shear waves in the alluvium.

The elastic point source is represented by a 3-D cavity of elements

enclosing the shot point. The cavity is pressurized by a unit step at t-0 and

three-component velocities are recorded at points on four lines over the free

surface. The cavity consists of three elements crossing on three orthogonal

lines. This provides an approximation intermediate between the circularized

-11-



source of the 2-D calculation and the three dipole forces equivalent to an

explosive point source, e.g., Love (1944). Lines are oriented north-south,

east-west and along the two diagonals, northwest-southeast and northeast-

southwest. The source cavity and output lines are illustrated in Fig. 2.3-2.

Synthetic seismograms are calculated by convolving the recorded veloci-

ties with a 3.5 Hz wavelet, which is closer to the expected frequency content

of the COALORA shot than the 10 Hz wavelet applied in the 2-D calculation.

This frequency is 1 Hz higher than the allowable shear wave frequency in the

alluvium but, because P-waves are the principal phases there and are well

modeled, the higher frequency is used to enhance the temporal separation of

these phases in the synthetics.

-12-
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Figure 2.1-2. Plan view of the COALORA site showing the Yucca
fault, the 6 km east-west iine for the 2-D model,
and the 2.3 x 2.3 km square for the 3-D model.
For reference, the line examined in detail by
Ferguson and Herrin (1982) is also included.
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Figure 2.3-1. Yucca Flat 3-D model showing Yucca L1ault and COALORA
shot location. Model is 4.6 km on a side and 1.2 km
deep, with 125 x 125 x 25 -390,625 elements.
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3.0 THE FINITE ELEMENT CALCULATIONS

The calculations described here were performed on a CRAY-IS at the LosI a
Alamos National Laboratory. Computer time was generously provided by the Con-

tainment Group at the Lab. Because the CRAY-iS is on a restricted partition,

it was not accessible from our remote site. Allen Cogbill of the Containment

Group provided the essential interface by submitting run files and making out-

put files accessible. Raw output data were transmitted over the phone between

Los Alamos and Menlo Park and all post-processi i was done on an inhouse mini-

computer.

3.1 2-D COALORA CALCULATION

The 2-D model and synthetic velocity seismograms are shown in Figs. 3.1-1

and 3.1-2 for vertical and radial components, respectively. The seismograms

(particle velocity versus time) are plotted vertically over each receiver

point on the model surface. Amplitude in each record is scaled to the maxi-

mum first arrival over the model. Scale magnification factors are indicated

above the seismograms. The wavelet has a duration of about .18 seconds and a

wavelength of approximately 270 meters in the alluvium. The receiver point

K near ground zero is offset to the east slightly, explaining the radial motion

just above the shot in Fig. 3.1-2.

Within a range of 1 km, the first arrival is seen to be the direct wave

through the alluvium. Beyond 1 km, a much weaker wave, apparently a head wave
*from the faster vitrified tuff layer (Rainier Mesa formation), precedes the

direct wave. Just above the shot, the vertical record (Fig. 3.1-1) shows a

phase shifted wavelet--from an initial zero phase input--caused by interfer-

ence between the direct wave and that reflected from and reverberating in the

tuff layer immediately below the source. No significant reflection from the

1 km Paleozoic interface is evident in the records near the calculated .69

second arrival time. Radial records indicate a strong reflection within a

range of 300 meters, arriving at .45 to .5 seconds and comparable in ampli-

tude to the direct wave. This appears to be a reflection from the water table

at a depth of 500 meters. Comparing vertical and radial records overall,

radial motion is stronger and more coherent than vertical motion, and records

to the west are somewhat more complicated than those to the east.

Referring now to the radial synthetics, Fig. 3.1-2, the Yucca fault does

not appear to exert a strong local influence on the model response. No direct
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diffractions, attributable to the fault discontinuity in the Rainier Mesa tuff

layer are evident in the records. Although certainly present, they are

obscured by the direct and reflected arrivals. Differences between east and
west records are probably due to the respective depths of alluvium rather than

to diffractions and scattering from the fault itself. Principal differences

are: direct waves in alluvium decay faster to the west (see the unmagnified

set of radial synthetics), and also to the west there appears a phase between

I and 1.8 km range, arriving from 1.3 to 1.7 seconds which is absent to the east.

Regarding phase velocities, measurement from the records gives the direct

wave in alluvium at 1.53 km/s, but the head waves arriving beyond 1 km yield

3.75 km/s. The alluvium phase velocity is 2 percent greater than the wave

speed and within modeling error bounds. However, the head wave velocities

are clearly too high to be associated with the 3.25 km/s RainierMesa tuff,

and are instead due to refractions from the saturated tuff below the water

table. True head waves from the Rainer Mesa tuff are just noticeable as

first arrivals between i to 1.6 km.

Some limited timing comparisons east and west of the fault can be made

from the records to later compare with results from Stump and Reinke (1983). 0

At a range of 567 meters, travel time is 435 ms and there is no difference

between east and west--as would be expected at this close range with no

intervening homogeneities in the alluvium. At a range of 2.62 km, the timing

discrepancy is 56 ms, retarded to the east and due to the depth difference.

The records are shown in Fig. 3.1-3.

3.2 3-D COALORA CALCULATION

Results of the 3-D calculations are presented in synthetic velocity seis-

mograms, Figs. 3.2-1 through 3.2-3, for vertical, radial and transverse compo-

nents. The synthetics consist of 42 individual seismograms equally spaced on

lines passing over the shot. The west-east and south-north (global) lines are

4.5 km long (111 meter spacing), and the diagonal lines are 6.36 km (157 meter

spacing), oriented southwest-northeast and northwest-southeast. Three sets of

synthetics are displayed for each line, with magnifications of 1, 20 and 2000.

The high magnification is used to examine the weak refracted phases. Duration

of the synthetics is 1.98 seconds after pressurization of the cavity. B

-18-



3.2.1 Vertical Velocity Synthetics

Vertical velocity synthetics are shown in Fig. 3.2-1 for the four lines.

Because the predominant input frequency is a third of that used in the 2-D

synthetics, wavelets are three times longer, hence less distinct and interfere

to a greater degree. The strongest motion is found over the shot point at

around .4 seconds, caused by constructive interference of the direct wave and -
reflected wave from the layer of Rainier Mesa tuff. Referring to the unmagni-

fied synthetics, ground motion decays rapidly with range--due in part to

scaling by peak interference amplitude rather than peak direct wave amplitude.

At a magnification of 20 the synthetics clearly show the direct wave as S
first arrival out to .9 km, at a measured phase velocity of 1.52-1.58 km/s on

all lines. Beyond a range of 1.35 km the first arrival is a refraction and

the phase velocity apparently depends on the depth of alluvium under the line

observed. On the S-N line, phase velocity, V is 3.1 km/s to the south and

3.26 km/s to the north. On the W-E line, V is 3.1 km/s to the east and 3.26

km/s to the west. From Fig. 2.3-1, the south and east ends lie on .5 km of

alluvium on the downthrown side of the fault, and the north and west ends are

over .35 km of alluvium on the upthrown side. Therefore, calculated phase

velocities are lower on the down side (east and south) and higher on the up

side (west and north). By overlaying the synthetics so that east is plotted

over south and west over north, we find that all arrivals are coincident,

* independent of range.

On the diagonal lines, also in Fig. 3.2-1, the refracted phases are less

distinct. Approximate measurements of slope on the synthetics at a magnifi-

cation of 20 give phase velocities of the first discernable arrivals as 3.25-

3.32 km/s on the northwest and southwest ends, respectively. Consequently, p
phase velocities on the diagonals do not show the trend nor the disparity

noted above between up and down sides of the fault. On the southwest end of

the SE-NE line the phase velocity is seen to increase significantly between
-2.5 and -3.2 km. This is attributed to a refracted wave in the shallow P
Paleozoic rock underlying the southwest corner of the model, Fig. 2.3-1.

3.2.2 Head Waves

a To see the earliest arriving signals in the finite element model, we

must examine the synthetics under very high magnification. At 2000X there is
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a clear first arrival which precedes all of the much stronger arrivals des-

cribed above. Referring to the south-north line in Fig. 3.2-1, phase veloc- ..

ities are found to be 3.0 km/s on the south end (down side) and 2.7 km/s on
the north end (up side)--in contrast to the trend observed above for later but

stronger arrivals. Physically, these first arrivals should be head waves from

the Rainier Mesa tuff layer.

Calculating the theoretical head wave arrival time at a range of 1.8 km

gives .76 seconds at the north end and .85 seconds at the south end. Measured

times from the seismograms at this range are .74 seconds and .83 seconds north

and south, respectively, within 2-3 percent of the theoretical. Therefore, in terms
of arrival times the phase is a refraction in the tuff layer, but phase veloc-

ities are 8 percent and 16 percent below the theoretical value of 3.25 km/s.
Discrepancies in V are caused in part by the 3-D finite element discretization,

which only uses three elements through the thickness to represent the high

speed tuff layer. This is clearly adequate to model arrival times within a

few percent, but measured phase velocities, which depend on the angle of inci-

dence of the wave from below, are more sensitive to the coarse discretization

in the layer.

3.2.3 Precursor Waves from Grid Dispersion

Further examination of the 2000X synthetics shows that just above the

shot, the earliest arrival time is .045 seconds, compared to the theoretical

body wave time of .15 seconds. This discrepancy is associated with the finite .

element discretization in general, and the 3-D source region in particular.

When the source cavity is pressurized, in addition to the radial modes

of an ideal spherical cavity, extraneous deformational modes are generated.

Most of these propagate at the appropriate body wave speed and decay rapidly

with range--however, weak precursors caused by grid dispersion will always

propagate one element per timestep. For a timestep of .0066 seconds, with

seven elements between the free surface and the shallowest pressurized ele-

ment, the theoretical arrival time is .046 seconds (versus .045 seconds mea-

sured from the seismograms) for an apparent body wave speed of 5.64 km/s.

The precursors may therefore be identified in the 2000X seismograms as

the first phase observed immediately above the source. Included in these
precursors is the so-called hourglass mode which is suppressed using a spe-

cial hourglass stiffness parameter in the finite element algorithm. This

-20-

... . . ... . .. .. . .... " ........ .. ..... .. . . ." .. . .. .. .. . .. . . .. . | . . . I m - Em .. .



spurious mode is only significant (under high magnification) in the innedi-

ate neighborhood of the source. It will always be present to some degree and

is most prevalent when only a few elements are contained in the source cavity,

one pressurized element being the worst case. Hourglassing will be discussed

further in the theoretical development.

3.2.4 Radial Velocity Synthetics

Radial velocity components on the global west-east and south-north lines

are shown in Fig. 3.2-2. The unmagnified synthetics on global lines

indicate that radial motion is more coherent and decays less rapidly with range

than vertical motion on the same line. Comparing the magnified radial records

to the verticals discussed in 3.2-1 shows essentially the same first arrival

times and phase velocities over each end of the lines. Within .9 km of the

shot, radials on the diagonal lines exhibit a stronger, slightly earlier direct

arrival. The implication is that vertical and radial motions are well corre-

lated, i.e., surface ground motions arise from the same incident body wave

phases.
S

33.2.5 Transverse Velocity Synthetics
Transverse synthetics on the global lines in Fig. 3.2-3 show relatively

weak arrivals with peak motions 25-30 percent of the radial component. The

transverse arrivals appear to correlate with vertical and radial components S

of motion. Careful comparison shows that transverse peaks are retarded by

.15 seconds on both ends of the W-E line, while on the S-N line peaks are

coincident on the south end and retarded by .15 seconds on the north end.

Motion asymmetry on the S-N line is clearly visible in the 20X synthetics, S

with earlier, stronger transverse velocities on the south end. The asymmetry

might be attributed to wave interaction at the fault crossing, south of th2

shot--probably diffractions from the obliquely oriented discontinuity in the

Rainier Mesa tuff layer. No such discontinuity is crossed on the north end S

and the transverse arrivals are much weaker there. On the W-E line the arriv-

als are weak on both ends, although the east line crosses the fault perpen-

dicular to the tuff discontinuity and the west line does not cross at all.

Therefore, waves incident on the fault trace at an oblique angle appear to S
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excite stronger transverse motions by diffraction from the edge of tuff layer

discontinuities across the fault.

Referring now to transverse arrivals on the diagonal lines, also in 0

Fig. 3.2-3, there is a marked difference in arrival times between synthetics

on the diagonals and those on the global lines. At IX the transverse velocity

is clearly higher on the southeast and northeast ends of the lines. These

ends both cross the fault trace obliquely and appear to support the hypothesis

that diffractions from oblique crossings of the discontinuity are responsible

for the stronger transverse arrivals.

The transverse phases on the diagonals also show a large time delay in

comparison to phases on the globals. If diffraction is the principal source

of these phases, then the retarded arrivals should agree with theoretical

timing from the source cavity to the fault edge and up to the surface. The

first arrival at the fault is a weak head wave through the Rainier Mesa tuff

layer at .12 seconds, and travel time of the resulting diffracted wave to the

free surface above the shot is .37 seconds--giving a total time delay of .49

seconds. Measured delay in the 20X synthetics is .45 seconds for the weak

precursors and about .5 seconds for the true arrival. This strongly suggests

that diffractions from the fault are the principal source of transverse phases

on the diagonal lines, which is further supported by the skewed appearance of

the synthetics, i.e., the apparent source is shifted to the right, consistent

with the direction and approximate range of the diffracting fault edge from

the source cavity. O _

The strong asymmetry in arrival times on either end of the diagonal lines

also appears to be caused by the fault. Measured phase velocities on the east

(down) side of the fault (right side of the synthetics) are 1.55-1.7 km/s on

both lines, while on the west (up) side they are 3.3-3.5 km/s. Therefore

arrivals to the east propagate through the slow alluvium, and to the west they

propagate through the faster tuffs. The reason that no wave energy is seen in

the tuffs to the east is that only weak secondary diffractions (diffractions

of diffractions) from the up side of the fault edge can couple into the down-

thrown layers. In contrast, diffracted energy from the discontinuity is cou-

pled directly into the layer on the west side. This is illustrated in

Fig. 3.2-4.

Comparing transverse motion on the diagonals to that on the globals shows

earlier and stronger arrivals on the global W-E and S-N lines. The discrepancy
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is caused in part by a one-half element offset of the global lines from the

true shot center, causing an erroneous transverse component which is strongest

near the source. The diagonal lines pass directly over the shot center.

Quantitatively, the diagonal line transverse motions are 20-30 percent of the

global line motions and the half element offset does not seem to account for

the full discrepancy.
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4.0 THEORETICAL ANALYSIS OF THE EXPLICIT WAVE SOLVER

Large-scale simulations of time domain seismic waves in heterogeneous

3-D geology require discrete numerical models with hundreds of thousands to

millions of degrees of freedom. Finite difference or finite element methods

reduce these models to a large system of ordinary differential equations in

time. The simplest explicit integration scheme (lumped mass approximation)

provides a natural, as well as practical and efficient algorithm for stepping

the system forward in time. The scheme's utility follows from the property

that all degrees of freedom are uncoupled during each time-step. This explicit

decoupling is a direct expression of the wave-like, i.e., hyperbolic nature

of the continuum problem, namely that disturbances at one point take a finite

amount of time to influence another point. In the discrete model the decou-

pling is explicitly implemented by choosing a time-step less than the shortest

transit time between any two nodes. The clear advantage over implicit algo-

rithms is that no large coupled system of algebraic equations is necessary.

The resulting computer code loops are readily vectorized for optimal process-

ing on pipelined machines.

Explicit integration methods are not without certain disadvantages, how-

K ever. One is the inherent difficulty in modeling viscous material damping in

a manner consistent with the damping behavior of a physical medium. Geologic

media are generally characterized by the quality factors, Q and Q for

dilatational and shear dominated motion, respectively. However, it is not

clear using the conventional numerical formulation how to solve for the model

damping coefficients as functions of Q and Q, purely on the basis of nodal

field quantities. In other words, given Q's over the model, how can viscous

damping coefficients for the orthogonal components of nodal velocity be

determined? One approach suggested by structural models is to assume so-

called Rayleigh damping, e.g., Bathe (1978) where the model damping coefficient

is a linear combination of the coefficients multiplying displacement and

acceleration vectors, i.e., the stiffness and mass matrices. In its general

form of implementation this is a poor approximation for a continuum. However,

in terms of a more natural set of local basis vectors (rather than the nodal

basis), useful alternatives to Rayleigh damping may be derived.

Another disadvantage to explicit methods is the presence of a class of

unrestrained deformational modes, so-called hourglassing modes. These are

by-products of the approximate spatial integration scheme used in calculating
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nodal field quantities, i.e., internal restoring forces. The modes are

associated with linear variations in the field between discrete nodes and can

be selectively and artificially restrained after isolating them from the local

grid deformations, e.g., Flanagan and Belytschko (1981). Hourglass modes are 0

usually unimportant components of the wave field except near abrupt changes

in boundary or loading conditions, or discontinuous 2-D and 3-D geometry like

corners and cavities. In the physical model these same discontinuities are

strong sources of diffracted waves, implying a correspondence between diffrac-

tions and hourglassing. The degree to which hourglass suppression influences

calculated diffracted fields is unknown.

In this theoretical section of the report a discrete analyses will be

performed to investigate aspects of explicit wave solution theory relevant to

the above comments. These include the vector formulation of an explicit

finite element algorithm in terms of a very useful modal element basis. This

basis extends the theory of hourglass suppression to selective damping of

dilatational and shear modes and is derived by diagonalizing the element mass

and stiffness matrices.

4.1 THE FINITE ELEMENT EQUATIONS--NODAL BASIS

To optimize the processing of discrete numerical models on pipelined

machines, it is necessary to fully vectorize the algorithm while minimizing the

number of arithmetic operations. In the following, a straightforward set of

vector algebraic equations is derived to accomplish this, based on a somewhat

different view of the explicit finite element method. The approach is to - -

reduce the governing element equations to their canonical form by transforma-

tions to element deformation basis vectors which diagonalize the mass and

stiffness matrices.

The finite element grid used to discretize the model is assumed to be

Cartesian, i.e., composed of uniform rectangular elements. Global Cartesian

grids provide the simplest formulation possible and eliminate the arithmetic

for intermediate element transformations mapping irregular hexahedra to

Cartesian boxes. Of course this also eliminates the ability to conform

smoothly to irregular (non-Cartesian) boundaries. However, one virtue of

large-scale models is that the grid is sufficiently dense to allow good resolu-

tion with only stepwise approximations to irregularities. In 2-D this is

analogous to the use of many discrete picture elements (pixels) to represent
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a graphics image. If the model can resolve a wave pulse of length, A, then it

can also resolve a material inhomogeneity (object) with similar characteris-

tic length. As a consequence, either the highest frequency or smallest

object to be represented determines a consistent grid spacing.

The finite element model consists of a three-dimensional, rectangular

domain partitioned by a uniform Cartesian grid into identical cubic elements,

M Fig. 4.1-1. The unknown displacements are to be determined at each grid

point or node. Displacements within elements are given by a shape function

which interpolates nodal values and maintains continuity between elements.

The simplest shape function for a Cartesian element is a 3-D version of

the trapezoidal rule. It can be derived formally from the local 3-D Taylor

series expansion by neglecting curvature terms, i.e., terms with second or

higher derivatives in one of the space variables. This function gives

| "u(x c + C, t) = uc + C1 u 
c  + 2 uc  + 3 uc + 2 uc

. .... 2 I  ~ 2  3~x 3  1 2 X X 2
c c c c cu~xC + ~,it3 u + 2 3 ~u

1l3 Xlx 3  23x2x3  1 23 ~X X2x3  (1)

where u - (ul,u 2,u3)T is the displacement vector, x and are global and

local coordinate vectors, respectively, and c superscripts refer to element

centroid values. The 24 components of the superscripted vector on the right

can be solved in terms of the 24 nodal displacements of the element, giving

u(xC+C, t) = D( ) 6(xC, t) (2)

where 6 = (U1 1 ,... ,u18 , u 21 ,...,u 2 8 , u31 ,...,u 38  is the nodal displace-

ment vector and subscripts refer to the coordinate and node number,

respectively.

With an analytical expression available for displacements within the ele-

ment, the theory of elasticity gives strains and stress as
T

- B6 (3)

" (a11 ' 2 ' "3' 12' '13' 23) T

=Cc - CB6 (4)
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where C is the matrix of constitutive constants and B is the strain-

displacement matrix, found by differentiating (2) with respect to ;19 42' 3

and substituting into the strain expression,

13 /3u 3u
" -

The final step applies to principle of virtual work to calculate -

generalized elastic and inertial forces, fE and fI corresponding to the nodal

displacements, 6. For a virtual displacement, 6 the elastic work is

R Todv - TB TBCB6dv

v v

and the inertial work due to constant mass density, p is

faT (pi)dv = f3T D TpDdv
v

,T E _8TI
External work of the elastic and inertial nodal forces are 6 f and -6Tf

respectively. Equating these to the integrals and solving gives

fE = K6, K E fBTCBdv (5)
v

fT= -M , M E PfDTDdv (6)

v

where K and M are the symmetric stiffness and mass matrices and the integrals S _

are over element volume. Therefore, the disc ite system of equations governing

motion of the single finite element is, from aynamic equilibrium, fE = f" + g,

hence (7
M6 = -K6 + g (7)

where g represents the influence of adjacent elements, external forces and damp-

ing. The 24 x 24 matrices are easily evaluated and K is found to be fully

populated while M consists of three 8 x 8 blocks on the main diagonal.

4.2 THE FINITE ELEMENT EQUATIONS--MODAL BASIS

Element stiffness and inertia properties can be defined with respect to

any complete set of displacement modes. The nodal basis used above is ideal

for deriving the system but not necessarily for optimal computational

efficiency. For the latter purpose, it is necessary to carefully examine the 5

structure and symmetries of the system of 24 equations governing a single
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element. A formal diagonalization of the mass and stiffness matrices would

yield the forms, TH-=PApT (8)

K - QXQT (9)

where P and Q are matrices of eigenvectors andA and X are diagonal eigenvalue

matrices. This is an effective approach but the required eigenvalue-eigenvector - -

analysis is non-trivial. Fortunately, a simpler alternative exists.

The alternative is to diagonalize the matrices by inspection, on the

basis of displacement modes of a unit cube. It is natural to start with the

mass matrix, M, because of its block structure. The three 8 x 8 blocks are

each associated with one component of nodal displacement so only one block

need be considered, the others following by a permutation of indices. To

proceed, recall that formal diagonalization of square matrices and modal

r" analysis of discrete structures share the same underlying mathematics, differ-

ing only in viewpoint. Therefore, diagonalization of the block matrices may

be achieved by a single modal analysis of the cube under the constraint that

only one component of displacement is involved. These modes consist of a

K rigid body translation and seven deformations. The modal shapes are repre-

sented by their eight ordered nodal displacements in vector form and all

modes are orthogonal (i.e., scalar products vanish).

The seven deformation modes are of two kinds. The first kind includes

3 the three modes familiar from classical elasticity theory--one extension (or

compression) and two shears in say, the C,, direction. The second kind con-

sists of four so-called hourglass modes. These are less familiar because

they represent bending deformations which are higher order and therefore

vanish in the usual mathematical limiting process with respect to modes of

the first kind. Modes of the second kind are encountered in the couple-

stress theory of elasticity, Sternberg (1968) which provides a natural

theoretical basls for their further study.

The complete set of mass matrix modes for the cube is plotted in

Fig. 4.2-1, where each is represented by its proportional odal displacement

vector, S',_ n - 1-8 and i - 1 for the CI, direction. The rigid body mode is

a vector with all elements equal. Modes of the first kind are given by

vectors with elements proportional to the 4i' 2' and 3 nodal coordinates,
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respectively, in the cube-centered Cartesian coordinate system, Fig. 4.1-1.

Modes of the second kind may be derived by an orthogonalization process

starting from the four known orthogonal mode vectors Ul rigid body and 3 0

first kind), e.g., Gram-Schmidt orthogonalization, or by simple experimenta-

tion. They are also available in the literature, e.g., Flanagan and Belytschko

(1981).

To diagonalize the mass matrix the block modal or eigenvector matrix is V

formed as Pi a (Si... from which the similarity transformation, P in (8)1 -8
becomes 0P

P 0 P P  (10)
0 0 P3 T

The Pi/23 and P matrices are unitary (orthogonal) meaning that P .P . The

diagonalized mass matrix can therefore be written as

Diagonalization of the stiffness matrix proceeds by first applying the

similarity transformation for the mass matrix, P as

K P TKP

Detailed analysis and results from the interim report, Wojcik, et al. (1982)

show that K is considerably simpler than K, but not yet diagonal. The number

of nonzero elements is reduced from 576 in K to 39 in K because of the greatly

simplified stress state for the element modes in Fig. 4.2-1. The 18 off-

diagonal terms arise from coupling of the i' 2 and 3 components of the

modes of the first kind, i.e., coupling between Lhe three extensional modes

and between the six shear modes. Modes of the second kind are uncoupled.

Therefore it is necessary to diagonalize the reduced system as - -

X- R KR

where matrix R is determined by generalizing the 2-D results obtained in the

interim report. In particular, the 9 modes of the first kind (3 modes in 3

directions) can be decomposed into 3 Poisson stretch modes, 3 pure shear

modes and 3 rigid rotation modes. These stiffness modes are drawn in

Fig. 4.2-2 for the 41, direction and can be written in terms of linear combi-

nations of mass modes of the first kind, resulting in an expression for R
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consisting of constants in the nonzero locations of K. Therefore, the diago-

nal stiffness matrix becomes

X - RT P TKPR - Q TKQ

In terms of the above factorization of the mass and stiffness matrices,

the equations for a simple finite element become

PAPT6  - -PRXRp5 +g (P+)

Therefore, to solve for the nodal accelerations, it is only necessary to pre-

multiply through by the inverse of the factored mass matrix, i.e., PA -pT, giving

6 -PIgRXRTPT6 + PlP g (12)

This is a new form of the consistent mass equation for nodal acceleration--

new in terms of the simple factorization of M- K multiplying 6. In most

practical applications to continuua, the consistent mass matrix, M is
replaced by a diagonal lumped mass approximation, A to allow a trivial inver-

sion of R, hence a solution for 6. This yields

M p TpT6 + (13)

neglecting the external force vector, g and comparing the consistent mass

equation, (12) to the lumped mass approximation, (13) shows that in terms of

arithmetic operations there is no advantage to mass lumping in the above

formulation.

4.3 VISCOUS DAMPING

There remains the question of a consistent viscous damping term in the

finite element equations of motion. To make the damping term explicit in our

formulation the force vector, g is replaced by

g- C6 + g

The unknown damping matrix, C is factored as

C - SCST

where C and S are its eigenvalue and eigenvector matrices. The intent is to

damp extensional and shearing motions of the medium, so it is natural to con-

sider the case where S - Q, i.e., where the damping matrix has the same
eigenvectors as the stiffness matrix. The eigenvalues of C therefore sonsist
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of the damping coefficients of the individual modes in the stiffness bases--

the rigid translations and rotations, Poisson extensions, pure shears and the

stress-couple or hourglass modes. It follows that each of these modes of a

finite element can be selectively damped by choosing an appropriate constant

for each eigenvalue of C in the stiffness basis.

The resulting damped finite element equations become, from (11),

PAPT6 + QCQT.+ Q QT6 = g (14)

In practice the only modes for which damping data is available are the exten-

sional and shear modes. In order to evaluate the damping constants in (14)

from the given quality factors, Q and Q (or alternatively, given percentages

of critical damping), exact solutions for the natural frequencies of the

Poisson extension and pure shear modes are necessary. These can be obtained

from a vibrational analysis of the two deformation modes in Fig. 4.2-2.
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5.0 CONCLUSIONS

The conclusions drawn from this research effort concern: large-scale

numerical modeling of seismic waves on supercomputers; a geophysical data

base adequate to justify 3-D simulations and interpretations of very near-

field seismic events; and a theoretical study of specializations of the

explicit finite element algorithm used for the calculations. The primary

conclusion is that, given the three-dimensional geologic database available

from past and ongoing investigations in Yucca Flat, Nevada Test Site, the

size of feasible 3-D computational models on the CRAY-lS appears to be

adequate to simulate full elastic wave fields and interpret arrivals for com-

parison with existing 3-D ground motion data. The most significant short-

coming is lack of an analytical implementation of the 3-D pressure sou~rce.

Instead, a relatively crude discretization of the source cavity is pressur-

ized, producing some artificial asymmetry in the outgoing pressure pulse.

Thus the discrete source in 3-D requires further investigation and characteri-

zation. In two dimensions, much higher grid density is available for modeling

so that discretization errors are not significant in large-scale 2-D applica-

tions. 4

Synthetic seismograms from the 3-D simulation of the COALORA event at

Yucca Flat indicate that a significant source of transverse motion on radial

lines through the source is diffraction from abrupt changes in geology. In

our model, diffractions were observed from the discontinuity in the Rainier -

Mesa layer across the Yucca fault. This suggests that local geologic inhomo-

geneities near the source will act as simple diffraction sources--effectively

providing secondary seismic sources in the free-field. This is in contrast

to the mechanisms of free-field scattering and strain release which can also

contribute to transverse motion. Future large-scale calculations of plane

waves through a detailed 3-D inhomogeneous model in Yucca Flat would enable

us to quantify the strength of the diffracted transverse motion.

Regarding diffracted fields, their representation by explicit finite

element methods requires further investigation. The reason is that the

pressurized source and material discontinuities produce hourglass modes which

are artificially suppressed during computations. However, we observe that

diffraction and hourglassing are closely associated because they are produced
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by similar features, namely discontinuities in loading or geometry. There-

fore, what is the effect of houglass suppression on real diffracted waves?

The answer to this question must come from a theoretical study of the finite 0

element algorithm.

Successful time-domain simulations in 3-D are clearly feasible with

pipelined supercomputers. Optimal processing still requires careful tailor-

ing of the algorithm, however, to vectorize inner code loops and eliminate

nonessential arithmetic. An effective approach to simplify the implementa-

tion and theory is to use dense Cartesian grids, typical of finite difference

methods, to discretize the model. The simplest case is the uniform grid con-

sisting of cubic elements--used exclusively in the present study. Theoretical

analysis of the cubic finite element shows that the application of heuristic

eigenvalue-eigenvector concepts, i.e., a change of basis, yields a closed

form diagonalization of the element mass and stiffness matrices. This pro-

vides a drastic reduction in the number of floating point operations required

to evolve the element forward in time.

In addition to the arithmetic simplifications provided by the eigenvalue-

eigenvector element modal analysis, the resulting displacement basis admits

selective damping of the individual vibrational modes of the element. Con- -

sistent viscous damping has always been a problem with explicit finite elements,

but the modal basis on cubic elements appears to yield an effective approach,

worthy of further investigation. The modal basis also allows a consistent

mass formulation with the same number of arithmetic operations as the lumped _

mass approximation, as well as an exact integration to produce the stiffness

matrix. For comparison, the FLEX code used for the present calculations

(representative of state-of-the-art explicit finite element theory) is

formulated with lumped masses and approximate single point Gaussian integra-

tion. All of these theoretical simplifications derive from the cubic element

and the application of linear algebra techniques to the element matrices.

Regarding hourglass suppression and its influence on diffractions, an

examination of the element modes shows 12 so-called hourglass modes for a

cube. These modes are involved with bending of the element due to moments or

couples acting on the element faces. However, the hourglass modes of a cube

are not complete, hence overly stiff, because curvature terms are excluded

from the element shape function. By including 12 curvature terms in the -
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Taylor series (2 for each face) and 12 additional generalized displacements,

a consistent bending theory can be derived. The appropriate generalized dis-

placements are expected to be the 12 edge rotations. Rotations are usually -

included in plate bending theories using Hermite polynomials, but a similar

inclusion in 3-D continuum theories appears to be new. We observe that

hending modes are associated with the couple-stress formulation in elasticity

theory, e.g., Mindlin (1963), Sternberg (1968). Couple-stress theory has

been thoroughly studied but is of limited utility; however, the present work

indicates that it may provide a further analytical framework for assessing

the effect of hourglass control on diffractions.

-
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